Operating Instructions
Power Factor Control Relay CXPLUS - Expert's Instruction Manual
Software Version 1.08 from relay serial number 1123596. Dated of issue Sep 052012

Contents

1.0 - Connecting Up
1.1 Current Transformer notes
1.2 Earthing the relay
1.3-1.6 Wiring diagram and notes. Contactor and Thyristor wiring diagrams.
2.0 - Energising the relay
2.1 Lockout time
2.2 Measured values in LCD Display
3.0 - The Commissioning Engineer's Quick Start Menu 100
3.1 Description
3.2 How to get into Menu 100
3.3 Setting the nominal system Voltage L-L
3.4 Setting the CT ratio
3.5 Setting the VT ratio
3.6 Selecting Automatic Step kvar measurement on switch on
3.7 Selecting AUTO-OFF-HOLD for the steps
3.8 Setting the target power factor-CPI
3.9 Setting Step switch time - St
3.10 Selecting the type of switching for each output
3.11 Alarms - how to cancel quickly.
3.12 Alarms - what do they mean
4.0 - Manual Switching
5.0 - INFO Menu

Expert Menus
6.0 - Menu 200 - Measurement settings
6.1 nominal voltage L-L
6.2 CT ratio
6.3 VT ratio
6.4 Voltage tolerance
6.5 Select L-L or L-N as measured voltage
6.6 Select phase angle offset
6.7 Start Automatic Initialisation
6.8 Activate/Deactivate step kvar size recognition
6.9 Dealing with networks having low power quality
6.10 Temperature settings
7.0 - Menu 300 - Control Settings
7.1 Step Threshold Setting adjustment
7.2 Target pf setting Cosphi 1
7.3 Target pf setting Cosphi 2
7.4 Target pf setting for export
7.5 Switching Time per step setting
7.6 Swapping Over smaller kvar for fewer larger steps
7.7 Activating Swap Over
7.8 Stop Automatic Step size detection
7.9 Blocking Defective steps
7.10 Setting the relay for Auto - Hold - Off - On
7.11 Changing over to sequential switching 1:1:1 ... 14 etc.
7.12 Reactive Power Offset setting
7.13 Asymmetrical switching - e.g. fast in slow out
7.14 Never permit leading kvar
8.0 Menu 400 - Capacitor Database
8.1 Setting Step Discharge Time
8.2 Manual input of each capacitor step kvar
8.3 Setting the function of each output (same as Out in Menu 100)
8.4 Checking the number of switchings of each contactor
9.0 Menu 500 - Alarms
9.1 Alarms permanently stored or cleared when fault gone?
9.2 THDU alarm
9.3 Set THDU alarm threshold level
9.4 Disconnect capacitors automatically if THDU above threshold?
9.5 Set Delay time of THDU alarm
9.6 Freeze switching steps if CT becomes disconnected
9.7 Alarm selection for number of operations/step or hours in service
9.8 Alarm setting for switchings on any one contactor
9.9 Alarm setting for number of hours since last service
9.10 Change over of temp sensor to digital input
9.11 Digital input change over from n / o to n / c
9.12 Temperature Alarm settings
9.13 Ventilator Fan start up command setting
9.14 Capacitor disconnection alarm if threshold exceeded
9.15 Failure to reach target Cosphi alarm
9.16 Defective switching alarm of capacitor step contactor
9.17 Low kvar output compared to initial kvar value of any one step alarm
10.0 Menu 600 - Reset Menu
10.1 Reset all settings to factory default - YES/NO
10.2 Reset step Data memory
10.3 Reset Operating Hours Memory
10.4 Reset Average PF Memory
10.5 Reset Max Temp Recorded Memory
10.6 Reset and cancel all alarms
10.7 Display of software version
10.8 Expert's password
11.0
12.0 Trouble Shooting
13.0 Technical Data and Relay manufacturing specification
$14.0 \quad$ Summary of default settings and settings on relay installed.

1.0 Connection

1.1 Installation must only be carried out by suitably qualified personnel. All local safety regulations must of course be followed including IEE wiring regulations $17^{\text {th }}$ edition if installation is in the UK

The power supply to the relay is taken from the phase - phase 50 or 60 hz voltage and connected via a fuse 6A max to Um1 and Um2. The relay power supply power convertor is switched mode so that the CXPLUS accepts any voltage across Um1-Um2 in the range $90-550 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Voltage Transformers for different supply voltages are a thing of the past. Check that the supply voltage is within the limits of the relay rated voltage., and the CT has 1 A or 5 A output., at full load.

1.2 - Current Transformer

The current supply to the relay is taken from a current transformer, which can be split core or ring type Class 1., with 5VA rating. The current transformer (CT) must be kept short circuited until connections have been securely applied to terminals $\mathrm{K}-\mathrm{L}$. The CT is normally mounted on a different phase to L2-L3 for the voltage supply. Other connections are possible - see phase offset menu 206. It is essential to ensure:
a) That the CT is measuring the total load of the feeder to be corrected including the PFC capacitor current
b) The ratio of the CT is such that full load current is about 75% of the CT ratio.
e.g. for a Max load of 500 amps, select a CT ratio of $800 / 5$ - not 5000/5. This is because at the lower current ranges CT's are less accurate.
c) Do not use a CT with too low a ratio for the measured load. E.g. If the load is 750 Amps, and you use a 500/5 CT ., the CT will then be saturated and will give inaccurate results.

When mounting the CT, ' P ' should be pointing in the direction of the incoming supply and 'L' towards the load. S1 on the CT Should be connected to ' K ' on the relay and $S 2$ to 'L' on the relay. The output from the CT can be 1A or 5A. The Max ratio of the CT must be such that the smallest step of switched capacitance will produce a current of not less than 15 mA . Reactive - preferably 20 mA .

Example : The smallest step size is 25 kvar., at $415 v 3 p h 50 \mathrm{~Hz}$. What is the highest CT ratio permissible?.
25 kvar at $415 \mathrm{v}=34.7$ amps. Capacitor will switch at 60% of nominal kvar $=20.8$ amps.
Minimum current $=20 \mathrm{~mA}$ reactive ., so Max CT ratio $=20.8 / .02=1040 / 1$ or 5200/5 for a 25 kvar capacitor operating at $415 \mathrm{v} / 3 \mathrm{ph} / 50 \mathrm{hz}$. A $5000 / 5$ would normally be selected as a max ratio
1.3 Connect the earth tag link on the instrument case to earth

1.4 Connect in accordance with the wiring diagram.

1.5 Remove any short circuit links from the CT and relay

1.6.1 Wiring diagram: Contactors

This dwg shows contactor coil switching phase - neutral but if phase-phase voltage contactor coils (415 v in the $u k$) are used and no neutral is brought into the cubicle, the common side of the coils can be to one of the phases as long the common phase as not the same phase as Um2

1.6.2 Wiring Diagram - Thyristors

The CXPLUS can switch with a one second time delay per step. For faster 20 millisec switching per step - or all steps - you need the CM relay. To trigger the thyristors you need an aux power supply of 12 v DC - see wiring diagram.
CXPLUS - T :

2.0 Energising the relay

2.1 The lockout time of 90 seconds will start counting down, after energising the CXPLUS. This to ensure that capacitors are not switched in immediately after an emergency generator start up - for example. To defeat lockout time press escape 4. and you will now scroll through values pressing $\boldsymbol{\nabla} \boldsymbol{\Delta}$ to navigate the measured values.

2.2 Measured Values in the Display

The three larger digits at the top show system power factor.-
e.g. $0.91 \mathrm{i}=$ lagging p.f. $0.91 ., 0.98 \mathrm{c}=$ leading p.f 0.98

The scrolled values $\boldsymbol{\Delta}$ have the following meanings. These are the readings the customer can readily access. Note that if the CT ratio is left at the factory default of 1 ., then the values marked ** will not be displayed.

2.2 Continued

The Scroll Through Menu - What do the Symbols mean?

U	phase - phase voltage
U	phase - neutral voltage
\| **	phase Amps on phase CT is connected
$\mathrm{P}^{* *}$	3 phase kW assuming balanced load
Q**	3 phase kvar total assuming balanced load
$\Delta Q^{* *}$	3 phase kvar required to reach target Cosphi assuming balanced load
S**	3 phase KVA assuming balanced load
THD U	Total Harmonic voltage distortion of L2-L3 (if this figure is above 5% check the current taken by the capacitors since high THDU can result in harmonic overload of the capacitor steps. Harmonic Blocking reactors must then be fitted to limit harmonic overload current)
3-5-9-7-9-11-13-15-17-19	harmonic voltages as \% of fundamental
$\begin{aligned} & 0 .--i \\ & \cos \end{aligned}$	Top figure $=$ Fundamental $50 / 60 \mathrm{hz}$ Cosphi to 2 decimal places Bottom Figure = Fundamental Cosphi to 3 decimal places as required in certain countries
PF	True rms power factor including all harmonic currents and voltages
APF	Average rms power factor ($\mathrm{kW} / \mathrm{kVA}$) since relay commissioned
F	Supply frequency
t	Real Time Ambient temperature
thi	Max Ambient temp. To date
Oph	Counter for number of hours relay has been in service, since last reset
tAn	Tangent of phase angle phi

NOTE: The CXPLUS measures in 4 quadrants and will detect import and export of kw/kvar. If you see EXPORT, when you know for certain you are importing load the reasons could be:

- CT total current is below 15 mA
- CT is reversed (you will see the letter 'c' after the power factor when you know it should be 'i')
- Phase angle (menu 206) is incorrect

3.0 The 100 Quick Start Menu - for Commissioning Engineers and Contractors etc.

3.1 The 100 Menu allows you to set the CT ratio- voltage measurement values,

 target power factor setting., and switching time per step. This is the menu the Commissioning Engineer can use on site.Values of $\mathrm{kW} / \mathrm{kVA} / \mathrm{kvar}$ will not be correct unless the correct setting is made for voltage and current.
In order to make these settings we have to go into the commissioning menu 100.
3.2 How to get into menu 100:
press 4 repeatedly to get back to the value 0....i
Now press $\boldsymbol{\nabla}$ and you see 'INFO' in the top right corner
Press $\boldsymbol{\nabla}$ again and you see 'MANUAL'
Press ∇ again and you see 'SETUP'
Press and release .'100' shows in the display
Press 1 again - you are now in the commissioning menu 100. The 100 menu
allows you to make the essential settings are marked in bold

3.3 Un - Voltage Setting

The first value you see is the Un - which you may think is phase Volts Phase Neutral. It is not ! It is the phase - phase system nominal voltage
The default setting for UK customers is 415 v ., but if you need to change this press \rightarrow and the first digit starts flashing - using $\Delta \nabla$ adjust as needed and key to adjust the second figure and so on. Press to confirm and the digits stop flashing.
If the relay is working at 11 kV via a voltage transformer, then set 11.0 and by using
$\Delta \nabla$ keys select kV ., then - ., to get 11.0 kV in the display

3.4 C.T Setting

To set the CT ratio key and the first digit starts flashing.
Assume the CT ratio is 1000/5., which is 200/1. Always set the CT ratio as a multiplication factor to 1 so for the CT ratio 1000/5 we set Ct to 200. The same sequence with ∇ and is used for all the other settings.
If you set the $\mathrm{Ct}=1$., then you will not get any readout values for KW-KVA-KVAR I as marked ** in the scroll through menu above.

∇

3.5 Pt - Voltage Transformer ratio setting.

This is only used when the relay is used on MV/HV systems. The default setting is 1., but if the relay is working on an 11 kv system with 110 v voltage input ., the setting for Pt is 100 , for example.

∇

3.6 Ai - Automatic step start up switching to record kvar per step in the memory This is a 'YES' 'NO' setting for automatic initialisation. The default setting is NO and we recommend you leave it there.
If set to 'YES' - when the relay is first commissioned it will switch each step one by one.. As it switches each step and out so the kvar outputs per step are recorded in the CXPLUS memory. If there is a wiring error of incorrect CT polarity the CXPLUS will only in the Ai mode correct this error internally. Ai will only start switching after pressing enter \rightarrow and the discharge time has expired (401- default 75 secs).If you have 4 steps on a 6 step relay then the last 2 steps will come up as FOFF and will remain out of service. If the load is fluctuating very heavily then it is best not to use Ai, i.e. make sure the Ai setting is on NO
If Ai is set to 'NO' then no automatic switching on initial energising will take place, and the steps will be switched in for the first time when they are required. Each time they switch in their kvar value is recorded in the relay memory.
Power factor control is then achieved by the best fit principle - automatically selecting the most suitable kvar size to fulfill ΔQ (kvar needed to reach target p.f.) Our recommendation is not to use Ai but to commission the relay to your requirements and leave Ai on NO .
3.7 PFC - Step switching Control

This control allows you to decide how you want the steps to be switched The possible selections are :
ON - Normal switching of steps on/off as the reactive demand changes. This is the same as normal AUTO control
OFF - Reactive control de-activated and all steps in circuit will be switched off HOLD - The steps switched in will remain on. The reactive control is de-activated The default setting is 'ON'- automatic switching of steps.

3.8 CPI - or Target Power factor setting.

Set to the required target PF. Note if you press $\mathbf{\Delta}$ when the CPI is 1 you will go into a leading pf setting. You can target up to 0,70 lead., which is an unlikely setting but when the PFC is on the LV side of a transformer and the customer is paying for energy on the HV side and the CT is on the Iv side of the transformer it may be useful to target to about 0.99 lead so as to compensate for transformer reactive current which is creating $I^{2} R$ losses in the windings on no load..

3.9 St- Switching time per step

Adjustable from 1 second -6500 seconds.
If the switch time is set to 1 second per step, for a rapidly changing load, of course it cannot switch back in again after a delay of only 3 seconds, due to the charge held on the capacitor. In this case the relay will wait until the programmed discharge time set in menu 401. Default setting on menu 401 is 75 secs.

3.10 OUt - Setting of Output for each Step

This setting allows you to select each step setting either as:
AUTO - normal automatic relay controlled step switching
AL - This step operates the temperature alarm contact. When the temperature is above the target setting - this contact can be used to start up the ventilation fan. See ventilation fan setting 513 in the expert menu.. This is only active if the relay is fitted with the temperature sensor option. All pfc relays manufactured in the UK have this temperature sensor fitted.
FOFF - This step is permanently off (Fixed off)
FON - this step is permanently on (Fixed on)
Default setting is AUTO

3.11 How to cancel Alarms quickly

To cancel all alarms quickly, hold the escape key $\mathbb{4}$ for 5 seconds. To cancel particular alarms see menu 500 - Alarms.

3.12 ALARMS - What do they mean ?

In the case of Alarm, the display will flash alternately ALARM .

The display will also show one of the following :

```
        TO CANCEL ALL ALARMS -
                                    EXCEPT THE SPL/... ALARM
                            HOLD THE ESCAPE KEY <
                        FOR ABOUT 3 SECS. THE

Alarms:
\begin{tabular}{|l|l|l|l|}
\hline U & \begin{tabular}{l} 
Measured voltage outside \% \\
tolerance set in menu 204
\end{tabular} & thi & \begin{tabular}{l} 
The second ambient temp set in \\
menu 514 has been exceeded. \\
Sequential switching off of steps \\
to bring ambient temp down \\
will commence
\end{tabular} \\
\hline I Lo & \begin{tabular}{l} 
Measured current below 15mA. \\
Check for open circuit or short \\
circuited CT, or insufficient load
\end{tabular} & OPH & \begin{tabular}{l} 
The limit set for operating hours \\
between servicing has been \\
reached. Call the service engr.
\end{tabular} \\
\hline I Hi & \begin{tabular}{l} 
Measured current too high. CT \\
saturated and inaccurate
\end{tabular} & OPC/-- & \begin{tabular}{l} 
The limit set in menu 508 for \\
number of switching operations \\
for contactor indicated has been \\
reached. Default=80,000
\end{tabular} \\
\hline HAr & \begin{tabular}{l} 
5\% harmonic voltage distortion \\
exceeded.., or setting put in \\
menu 503. If reactors fitted this \\
\%setting can be increased
\end{tabular} & PFC & \begin{tabular}{l} 
Target Cosphi not reached. \\
More capacitors needed or need \\
replacing,.
\end{tabular} \\
\hline StP /-- & \begin{tabular}{l} 
The step indicated is faulty. \\
Check fuses contactor, capacitor \\
on that step
\end{tabular} & Ai/Abrt & \begin{tabular}{l} 
Automatic Start Up ( self \\
commissioning) aborted.
\end{tabular} \\
\hline SPL /-- & \begin{tabular}{l} 
The step indicated has lost more \\
than 30\% of its initial kvar value \\
when first commissioned
\end{tabular} & & \\
\hline SPL /-- & \begin{tabular}{l} 
SPL /-- alarm cannot be \\
cancelled using the \begin{tabular}{l} 
esc. \\
button. If you have the SPL \\
alarm, the step indicated has \\
lost 30\% or more than 30\% of its \\
initial kvar value. Call your \\
supplier if SPL /-- alarm \\
activates for advice.
\end{tabular}
\end{tabular} & & \\
\hline
\end{tabular}

\section*{4.0 - Manual Switching}
4.1 Sometimes there is no load on the system when the relay is commissioned. In order to test everything is working correctly, the best way is to switch steps in manually until a leading power factor is achieved, and then to return the relay to automatic mode to make sure the relay switches out to reach the target power factor.
Press \(\downarrow\) repeatedly to get back to Cosphi -i in the display
V-INFO
V-MANUAL
Now enter MANUAL mode - by holding down the key for 3 secs, Scroll up \(\boldsymbol{\Delta}\) and the figure 1 is in the display. This is step 1 - to switch step 1 on key . Now move through the steps using \(\boldsymbol{\Delta}\) to get to the next step and to switch it on. To switch off press again. Under low loads on the system this will create a leading power factor. To switch back to Automatic control, so as to check the relay is working correctly, press 4 repeatedly until MANUAL-INFO-SETUP disappear from the right hand side of the display, so the relay is now in its normal AUTO` automatic switching function, and if the Cos phi is leading it should switch steps out to achieve the target Cosphi
(as set in 3.8)
Remember, if you have switched on and then off., you have to wait for the discharge time ( default 75 secs ) before this same step can be switched on again. The kvar values of each step are not recorded in the MANUAL mode

\subsection*{5.0 The INFO Menu}

To get into the INFO menu press escape \(\varangle\) a few times and then \(\boldsymbol{\nabla}\)., and you see INFO in the top right corner of the display. Enter the INFO programme with \(>\).
Now you see the steps in the bottom section of the display.1-6., to 1-12., or 1-14 depending on the number of steps on this relay.
The INFO programme is extremely useful since it tells you exactly how each step has been performing since installation. You can move to interrogate each step by using the \(\boldsymbol{\nabla} \boldsymbol{\Delta}\) keys. To examine the behaviour of any one step enter that step with - and as you scroll down you see the following symbols:

CC: This is the latest recorded kvar output of this step. The value is calculated over the last 10 switchings - average value
but remember this kvar value is only correct if the CT has been set to the correct ratio
\% : This shows the \% loss in kvar per step since that step was first energised (very useful to check capacitor quality and possible over stress due to harmonics)

OC: number of switchings of that contactor. The display goes up to 999., and after 999 it changes to 1.00 k , so you show each ten switchings after 1000 operation. The default setting for an Alarm to show is set to 80,000 switchings for each contactor. The display would then show 80.0k You can change this default setting in menu 508.

AUTO-FOFF-FON-AL - to indicate how that step has been allocated in the Quick Start Menu

\subsection*{6.0 How to enter the Professional or Expert Menus 200-300-400-500-600}

The professional menus 200-600 enable the qualified user to set the relay in any particular way needed. Because the settings can affect the satisfactory operation of the relay they must only be changed by professionally knowledgeable personnel. The object of this password protected entry mode is to dissuade unauthorised persons from adjusting important settings.

To enter these professional menus :
Press \(<\) repeatedly until you get to the Cosphi...i in the display
Now press \(\boldsymbol{\nabla}\) - INFO in top right hand corner
Press \(\boldsymbol{\nabla}\) again to - MANUAL - \(\boldsymbol{\nabla}\) again to SETUP enter SETUP with -
You see 100 press \(\boldsymbol{\nabla}\) you see Pin and below this the three digits 000

\section*{Enter the password : 242}

You can change this password if you want to - see menu 608
Now using \(\boldsymbol{\Delta} \boldsymbol{\nabla}\) you can enter all the expert menus 200...... 600

\section*{Menu 200}

To set the values once you have 200 in the display press \(\boldsymbol{D}\)., then \(\boldsymbol{\nabla}\)
6.1 201 - set the nominal phase - phase voltage because this is used to calculate \(\mathrm{kW} / \mathrm{kVA} / \mathrm{kvar}\).Default setting is 415 v for the UK. This is in fact already done if you have set it in the 100 menu under Un
\(6.2 \mathbf{2 0 2}\) - set the CT ratio. See notes in the \(\mathbf{1 0 0} \mathbf{~ m e n u}\). This has probably already been done in the 100 menu under Ct
\(6.3 \mathbf{2 0 3}\) - set the VT ratio. See notes in the \(\mathbf{1 0 0} \mathbf{~ m e n u}\). This has probably already been done in the 100 menu under Pt
\(6.4 \mathbf{2 0 4}\) - set the tolerance of nominal voltage setting. This is a very important setting. The default setting is \(+-10 \%\). If the voltage falls outside the pre-set tolerance, the capacitors will be switched out. Low voltages can cause contactors not to close properly, and consequently over heat and fail. High voltages will overload the capacitors and other equipment
\(6.5 \mathbf{2 0 5}\) - Select the voltage used on the measurement circuit. YES = L-L volts (default setting). NO= L-N voltage measurement. Provided the measured voltage is within the specified tolerance levels no setting is necessary since the relay will recognise which voltage is being used., and adjust itself automatically.
\(6.6 \quad 206\) - Select the phase angle. The table below gives the settings between measured resistive current and voltage. The common settings for lv systems are :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Voltage & L1-N & L2-N & L3-N & L1-N & L2-N & L3-N & L1-N & L2-N & L3-N \\
\hline C.T in phase & L1 & L2 & L3 & L2 & L3 & L1 & L3 & L1 & L2 \\
\hline \begin{tabular}{c} 
Correction angle- \\
degrees
\end{tabular} & 0 & 0 & 0 & 240 & 240 & 240 & 120 & 120 & 120 \\
\hline Voltage & L2-L3 & L3-L1 & L1-L2 & L2-L3 & L3-L1 & L1-L2 & L2-L3 & L3-L1 & L1-L2 \\
\hline C.T in phase & L1 & L2 & L3 & L2 & L3 & L1 & L3 & L1 & L2 \\
\hline \begin{tabular}{c} 
Correction angle- \\
degrees
\end{tabular} & 90 & 90 & 90 & 330 & 330 & 330 & 210 & 210 & 210 \\
\hline
\end{tabular}

Note that all relays are defaulted in menu 206 as follows :
When the relay recognises that the Um1-Um2 voltage is the L-L volts as Un - the default is 90 When the relay recognises that the Um1-Um2 voltage phase-neutral voltage - the default is 0

\section*{\(6.7 \quad 207\) - Start Automatic Initialisation}

YES - Automatic switching of the steps will take place on first energising of the relay, and kvar values per step will be recorded in the memory
NO - No steps will be automatically switched in.
If YES is selected, switching will start and the display will return to NO. Ai is fully described in the 100 set up menu. Default setting is NO and we recommend it is kept there.

\subsection*{6.8 208 Activate Automatic Initialisation on relay start up} Default setting is NO.
\(6.9 \mathbf{2 0 9}\) Setting the Supply Frequency on networks with bad power quality The selections on this setting are : AUTO-50-60.
If the network quality is good, the highest accuracies will be obtained on the AUTO setting However, if the power quality is very bad with violent voltage fluctuations, sags and surges, transients and/or high harmonic content, the CXPLUS will show incorrect readings in the display for the measured values In this case change over to settings 50 or 60 according to the stated system supply frequency. ( 50 Hz or 60 Hz )
6.10210 - Temperature Setting adjustment

This setting allows you to adjust the temperature readings obtained from the temp. sensor in the CXPLUS. If you find, for example the temp sensor is reading \(2^{\circ}\) too low., then put in an offset on this setting of \(+2^{\circ}\)

\subsection*{7.0 MENU 300 - Control Settings}

\subsection*{7.1301 - Switching Step Threshold Setting}

This determines the \% level of kvar at which the step will switch according to its measured reactive value. Settings can be made in the range \(55-100 \%\). If the setting is made to \(50 \%\) or less then hunting can take place. The factory setting is \(60 \%\), so that in the case of a 100 kvar capacitor, there must be 60 kvar of lag or lead before switching starts.

\section*{\(7.2 \quad 302\) - Target Power factor Setting Cosphi}

This will probably have already been set in the Start Up Menu under the setting CPI
If not, set the target power factor No. 1 which is the main target to be achieved under normal operating conditions. This often means that there will be times when the target will not be achieved and for this reason the default setting for the low pf alarm (515) is
NO ALARM
7.3303 - Target Power factor Setting Cosphi 2 (For Emergency Generators- etc) If there is an emergency generator on the system - for example - a second lower power factor is often desirable since emergency generators can become unstable at leading power factors. This menu allows you to set a different Cosphi 2. In order to activate Cosphi 2 externally - see menu 510

\subsection*{7.4304 - Target Power Factor Setting for Export}

If the generator is exporting power you have two choices of target power factor: YES - Cosphi 2 is selected for power export
NO - Cosphi 1 is selected for power export

\section*{\(7.5 \quad 305\) - Switching Time per Step}

This will probably have been set up in the 100 start up Menu, but if not you can set it or change it here. The following points must be observed when setting the switch time :
1. Too rapid a switch time will result in excessive wear on the contactors
2. The relay is calculating the kvar demand after each switching operation has taken place, and too rapid a switch cycle will result in incorrect evaluations being made., in the recorded kvar per step.

\section*{\(7.6 \quad 306\) - Step Switching Swap Over time}

This is the time taken to switch over from an active step to a new step that has been selected - see menu 307. The default setting setting is 2 seconds.

\section*{\(7.7 \quad 307\) - Activation of Step Swap Over}

This function is useful if there are large steps mixed in with small steps on the installation. 'YES' - causes the relay - for example - switch out \(2 x 25\) kvar and switch in \(1 \times 50\) kvar. 'NO' de-activates this function. Menu 307 has no purpose if all steps are the same value
7.8308 - Stop Automatic Capacitor Size Detection.

YES - The kvar outputs of each step must be manually entered. Automatic step kvar value is de-activated. This is used when :
a) The relay is working on a very rapidly changing load - for example with cranes or elevators - so that the relay does not have time to recognise the effective kvar value of each step, then 'YES' should be selected., and the kvar value of each step entered manually.
b) If faulty step recognition is not required.
c) If the switching time of the capacitor step circuit breaker has a time delay of more than 200 msecs .( this can occur on MV/HV capacitor banks)
If YES is selected then set the values per step manually - see 402
'NO' - Step kvar recognition is functioning automatically each time switching takes place. This is the preferred setting since he relay will report an failures. Note that on 'MANUAL' setting there will be no step kvar recognition.
Default setting 'NO'
This means that if you want to check the operation of contactors in the workshop, with the capacitor fuses pulled you can switch each step manually and its 0 kvar value will not be recorded in the memory.

\subsection*{7.9309 - Blocking Defective Capacitor Steps}
'YES' - Any capacitor steps that are recognised as faulty will be permanently switched off until replaced or repaired.
'NO' - Capacitors reported as faulty will continue to be switched
Default setting 'YES'

\subsection*{7.10310 - Stop - Start - Hold PF Control}

This setting allows you to stop automatic switching, when setting up the relay for example, so that unwanted rapid switching does not take place These are the possible settings:
ON - Relay works normally in Auto
OFF - Regulation will be stopped and all active steps switched out
HOLD -Regulation will be stopped and all active steps will remain switched in.
Default setting ON
This has probably already been set in 3.10

\subsection*{7.11311 - Selection of Switching Sequences}
1. Automatic - The relay is working on the 'Best Fit' Principle. i.e. The relay is using its intelligence stored in the data bank to select the capacitor step value most suited to the real time kvar requirement
2. LIFO - Last in - First out Switching is made sequentially \(1 . . . . . .14\) in and \(14 . . . .1\) out ( or number of steps available)
3. Kombifilter - The relay works on the Best Fit principle, but this programme has been modified so that it always switches the same or more capacitance on the odd numbered exits to that switched in on the even exits.
4. Progressive - When the relay recognises that the reactive demand is very high it will switch in steps rapidly to reach the required compensation with a minimum delay. Default setting 1

\subsection*{7.12312 - Reactive Power Offset}

This setting you to add on a value of kvar to the measured value. For example there may be an additional inductive load that is not being measured by the CT. The additional inductive kvar can be programmed to compensate for this amount. Default setting 0 (kvar)
7.13 313-Asymmetrical switching time delay - possible selections +127 to -127 This setting allows unequal switch times in the inductive and capacitive directions. If the setting is put to +10 for example, the capacitor steps will switch out 10 times faster than they switch in. Default setting 1 (equal time for switch in/out of steps)

\subsection*{7.14314 - Switch off Capacitors in Leading Condition}

YES - As soon as the reactive load swings into lead all necessary excessive steps will be switched out immediately, disregarding the programmed step switch time. NO - The relay switches steps out on a leading power factor according to the programmed switching time
Default setting NO. Generators do not generally like a leading pf so if you have a chp plant or stand by generator on the system it may be wise to set this setting to NO

\subsection*{8.0 MENU 400 - Capacitor Database}

\subsection*{8.1 401-Discharging Time}

The same discharge time is set for all steps. By setting this value ( which must not be less than the stated discharge time given by the capacitor manufacturer) the relay will not re-energise a step that has just been switched out until the programmed discharge time has expired. See comments in 3.9
Default setting : 75 secs

\subsection*{8.2402 - Capacitor Size Step value - manual setting. 1....... 14 (Max) If the automatic step kvar recognition is deactivated (if YES has been selected in 308) then the value of each step must be entered manually, for each step. \\ Scroll through each step using the \(\boldsymbol{\Delta} \boldsymbol{\nabla}\) keys., adjust the value and enter - \\ The kvar load values will then be calculated from the settings of Voltage and \\ Current and suitable steps selected. \\ Default setting : 5var}
8.3403 - Type of Step Exit 1........ 14 (Max)

This setting is identical to the Out setting in the 100 Quick start menu.

\subsection*{8.4404 - Capacitor Contactor Switching Counter}

Each time a contactor switches it will be shown on the display. By scrolling through the steps \(1 \ldots . . . .14\) you can see the number of switching operations of each contactor. The number of operations recorded can be deleted in menu 602. A very useful record for the service engineer. This information can also be ascertained in the INFO menu.

\subsection*{9.0 MENU 500 - ALARMS}
9.1501 Alarm Storage

YES - Alarm display must be reset by hand
NO - Alarm display will disappear once the problem has gone away Default setting : NO
9.2502 - THDU Alarm

YES - open the alarm contacts when the pre-set THDU (total harmonic distortionvoltage) threshold is exceeded ( see 503) The display will show: HAr ALARM NO- Exceeded values of the THD setting will not be reported as an alarm
Default setting : YES. If you have fitted reactors to each capacitor step then this alarm can be set to NO

\section*{\(9.3 \quad 503\) - Threshold THD \\ The threshold setting value for THD- Voltage - can be set Default setting 5\%}
9.4504 - Disconnect capacitors when THD above threshold limit

YES - If the THD is above the threshold the capacitor steps will be switched out one after the other
NO - No action will be taken if the THD is above the threshold Default setting NO

\section*{\(9.5 \quad 505\) - Delay time of THD Alarm}

Delay of the alarm in the event of a short time excess of THD Default setting : 60 secs.

\section*{\(9.6 \quad 506\) - Freeze Exit Relays when I==0}

YES - If the CT current falls below 15mA., all active steps will remain in circuit NO - If the CT current falls below 15 mA ., all active steps will be switched off. Default setting : NO

\section*{\(9.7 \quad 507\) - Service Alarm}

YES - The alarm contact opens when the Max number of programmed switching operations has been reached on any contactor or when the Max number of hours since the last service has been reached
NO - The alarm remains closed when the Max number of programmed switching operations has been reached on any contactor or when the Max number of hours since the last service has been reached
Settings - see 508
Default setting : NO

\section*{\(9.8 \quad 508\) - Alarm setting threshold for number of switching operations of any one contactor \\ The same threshold setting applies to all steps \\ Default setting : 80,000 operations. Alarm Display: OPC ALARM}

\subsection*{9.9509 - Max Operating Hours of the CXPLUS}

This allows an alarm to be given when the installation has not been serviced after the pre-set time.
Default Setting for relays made in the UK : 9000 hours ( 1.02 years ).
Alarm Display: OPH ALARM

\subsection*{9.10510 - Temperature Sensor as Digital Input.}

YES - The the temperature sensor CONTACT ( T1-T2) is used to switch over the target pf from Cosphi 1 to Cosphi 2 for example for high tariff and low tariff requirements - see 302-3.
This is not applicable generally in the UK. On the continent some power companies do not charge for reactive energy after midnight and in this case it
makes sense to have a night time p.f. Target lower than the day time pf so as to prolong the life of the capacitors and reduce capacitor watt losses
NO- The temperature sensor operates with an externally plugged in sensor to monitor the temperature threshold set in 512/3. If a thermostat is connected ., then the display will show.
HIGH ( alarm contact open ) or LOW ( alarm contact closed.)
Default Setting: NO. All relays supplied by Boddingtons after serial number 1123596 have the temperature measuring thermostat control fitted.
Note this menu is locked against 512. If 512 is set to YES this point will jump to NO and cannot be altered.

\subsection*{9.11511 - Digital Input active with High Signal}

YES - Temperature sensor digital input T1-T2 n/o contact
NO - Temperature sensor digital input T1-T2 n/c contact
Default setting : NO
9.12512 - Temperature Alarm

YES - The relay monitors temperature alarm 1+2
NO - Alarm disabled
Default setting : NO
9.13513 - Temperature Threshold 1 - Fan Start Up Contact

Default setting \(30^{\circ} \mathrm{C}\) - when this temperature is reached the exit relay nominated as alarm will close, in order to start up the cubicle ventilation.
9.14514 - Temperature Threshold 2 -coming into circuit Switch off Capacitors Default setting \(55^{\circ} \mathrm{C}\) - When this temperature is reached the relay will switch all steps off one after the other. Alarm Display: thi ALARM

\subsection*{9.15 515- Failure to reach Target Cosphi}

YES - If the relay fails to reach the target power factor after \(75 \times\) step switch time ('St' in start up menu) the designated alarm contact will close and the failure will be reported in the display. The display will show : PFC ALARM / FLTY ALARM (IN STEP DISPLAY)
NO - Under compensation alarm switched off
Default setting -NO. We set this to NO because many customers target to unity pf (CPI=1.0) and this may not be reached at the higher loads so the alarm is going off unnecessarily.
9.16516 - Defective switching step Alarm

YES - After three attempts if the relay does not sense sufficient reactive kvar coming into circuit, the alarm contact is opened and the failure is shown in the display. All defective steps will be shown in the display. The display will show : St
EP aLARM
NO - Alarm disabled
Default setting: NO

\subsection*{9.17517 - Step Power Loss Alarm}

YES - If the output of any step fall to less than \(70 \%\) of its initially recorded value, the alarm contact opens and an indication is shown in the display. The display will be : SPL ALARM in the display for each step you will see, for Step 11 for example 11 ALARM
NO - The alarm contact is disabled

Default setting : NO

\subsection*{10.0600 - The Reset Menu}
10.1601 - Reset All Settings to factory Default Setting

YES - Resets all settings to the factory default setting - including discharge time ( 401) - see default settings in 13.0

\subsection*{10.2602 - Reset Step Data Memory}

YES - Resets all recorded data ( number of switchings of each contactor.(404) , kvar size of each step (402)
10.3603 - Reset Operating Hours Memory

ES -Resets Oph to zero as shown in the main display.
10.4604 - Reset Average PF

YES - Resets average PF recorded to date
\(10.5 \mathbf{6 0 5}\) - Reset Max Temperature
YES - Resets the highest recorded temperature back to current ambient temperature
\(10.6 \mathbf{6 0 6}\) - Reset Alarm
YES - Cancels all current alarm indications.

\subsection*{10.7607 - Software Version}

Displays software version on this relay
10.8608 - Password

The default password is 242., but you can change this if you wish. If you do change 242 is always active

\subsection*{11.0 SUMMARY OF MENUS OF CXPLUS:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Default} & & & \multicolumn{2}{|l|}{Default} \\
\hline Un & 415 & Set L-L system volts & PFC & ON & Selects whether steps are on AUTO-HOLD-ON-OFF \\
\hline t & 1 & Set CT ratio :1 & CPI & 1 & Target Cosphi \\
\hline Pt & 1 & Set VT ratio :1 & St & 10S & Switching Time \\
\hline Ai & NO & Automatic Initialisation?YES/NO & OUt & AUTO & \begin{tabular}{l}
Selects what each output does. \\
AUTO-Fon-Foff-AL( starts up ventilation fan )
\end{tabular} \\
\hline & & \begin{tabular}{l}
Expert Menus 200-600 \\
To get into these please call your supplier
\end{tabular} & & & \\
\hline 200 & & MEASURING & 400 & & CAPACITOR DATABASE \\
\hline 201 & 415 & Sets system Voltage Level Un ( repeat of Un in Menu 100 ) & 401 & 75 secs & Set discharge time to prevent re-energisation on quick switching sequence \\
\hline 202 & 1 & Sets CT ratio:1 (repeat of Menu 100) & 402 & \[
\begin{gathered}
5 \mathrm{var} \\
\text { (1.max) } \\
\hline
\end{gathered}
\] & Manual entry of kvar values per step \\
\hline 203 & 1 & Set VT ratio:1 (repeat of Menu 100) & 403 & \[
\begin{gathered}
\hline \text { AUTO } \\
\text { All } \\
\text { steps } \\
\hline
\end{gathered}
\] & Select what each output does Same as Out setting in 100 menu \\
\hline 204 & 10\% & Tolerance \% of Un Voltage Setting & 404 & 0 & Step switch counter Initial value 0 increases with each switching \\
\hline 205 & YES & Select L-L or L-N as measurement voltage & 500 & & ALARMS \\
\hline 206 & 90응 & Select Phase Angle U-I & 501 & YES & Select if alarm display is cancelled when fault cleared or not \\
\hline 207 & NO & Ai ( Automatic Initialisation) start & 502 & YES & THD Alarm setting YES = on NO =off \\
\hline 208 & NO & Activate Step kvar Recognition & 503 & 5\% & \% setting for THD alarm if on \\
\hline 209 & AUTO & Frequency setting for low quality networks & 504 & NO & Select if steps are switched off if THDU above target level \\
\hline 210 & \(0^{\circ} \mathrm{C}\) & Temp setting offset & 505 & 60 secs & Select time delay of THDU alarm \\
\hline & & & 506 & NO & Freeze exits if no CT current \\
\hline 300 & & CONTROL & 507 & YES & YES=Service alarm operates when max operating hours or switchings on any step is reached. \\
\hline 301 & 60\% & \% value of kvar for step switching. & 508 & 80,000 & Set No. of contactor operations for Alarm \\
\hline 302 & 1.00 & Target PF 1 & 509 & 9,000 & Set No. of operating Hours for Alarm \\
\hline 303 & 0.95i & Target PF 2 & 510 & NO & Temperature sensor is set to monitor temp and show it in the LCD Display. \\
\hline 304 & NO & Target PF when exporting & 511 & NO & Select if Digital input is \(\mathrm{n} / \mathrm{c}\) or \(\mathrm{n} / \mathrm{o}\) \\
\hline 305 & 10 S & Switch Time per step in seconds & 512 & NO & Temp. Alarms 513/514 ON/OFF \\
\hline 306 & 2S & Step switch swap over time & 513 & \(30^{\circ} \mathrm{C}\) & Temp Setting for exit relay nominated as fan control \\
\hline 307 & YES & Activation of Step swap over & 514 & \(55^{\circ} \mathrm{C}\) & Emergency switch off of steps one by one if temp exceeds target setting - default \(=55^{\circ} \mathrm{C}\) \\
\hline 308 & NO & Stop Automatic kvar step detection & 515 & NO & Target Cosphi setting \\
\hline 309 & YES & Blocking defective Capacitor Steps & 516 & YES & YES= Alarm for defective step if no step kvar output after 3 attempts \\
\hline 310 & ON & AUTO-OFF-HOLD setting & 517 & YES & Step power loss alarm \\
\hline 311 & 1 & \begin{tabular}{l}
Selection of switching sequence. \\
1=Auto.,2=Last in first \\
out,3=Kombifilter ,4=Progressive
\end{tabular} & 600 & & ALARM RESETS \\
\hline 312 & 0 & Reactive kvar offset & 601 & NO & All alarms back to factory default \\
\hline 313 & 1 & Assymetrical Switching fast in slow out etc. & 602 & NO & Resets all recorded data of kvar per step+kvar output of each step \\
\hline 314 & NO & Switch off steps if cosphi is leading. Used for aux.generators & 603 & NO & Resets Operating Hours to zero \\
\hline & & & 604 & NO & Resets Average PF \\
\hline & & & 605 & NO & Rests Highest Ambient Temp \\
\hline & & & 606 & NO & Reset all alarms \\
\hline & & & 607 & NO & Displays software version \\
\hline & & & 608 & NO & Gives password \\
\hline
\end{tabular}

\subsection*{12.0 TROUBLE SHOOTING}
\begin{tabular}{|c|c|c|}
\hline FAULT & POSSIBLE CAUSE & SUGGESTED REMEDY \\
\hline No indication in the display & No power supply to terminals UM1-UM2 & Check for voltage in the range \(90-550 \mathrm{v}\) 50/60hz on these terminals \\
\hline Display shows U ALARM & Power supply is outside voltage tolerance setting. & Check the setting entered on menu 201 and 204 \\
\hline \[
\begin{aligned}
& \text { Display shows } \\
& \text { I LO }
\end{aligned}
\] & Measured Current is below 15mA & Check CT circuit. Are summated CT's in opposition? Has short circuit link been removed? Is CT circuit broken? \\
\hline Display shows wrong value of Voltage or Current & Incorrect CT or VT ratio has been submitted. & Check settings of VT and CT. Remember the settings are :1 so a \(1000 / 5\) CT \(=\) setting of 200 \\
\hline Display shows wrong value of Power Factor & Capacitor Step Size has not been recognised, or phase angle setting has been wrongly entered in 206 & Start Ai in the set up menu, Check the setting of phase angle in 206 and rectify if necessary. \\
\hline Power factor does not improve after stepping steps in. Steps won't switch out & CT in wrong position - see notes 1.2 of these operating instructions. & Check position of CT ensure it is measuring total current including capacitor current and if split core make sure the gap is fully closed up. \\
\hline Display shows I Hi ALARM & Output from CT is too high - above 5 amps. & Check the CT ratio selected. Change if necessary. \\
\hline Display shows PFC ALARM & Continuous over compensation or continuous under compensation & Check the capacitors and contactors. Contactor could be welded in. Check that steps are not in the FON setting (PFC /Out in menu 100 ) Is the kvar supplied sufficient for the reactive demand? If not under compensation will be reported. \\
\hline \begin{tabular}{l}
Display Shows Leading Cosphi....c \\
When you know there is lagging load
\end{tabular} & \begin{tabular}{l}
Voltage or current connections wrong way around. \\
Phase angle incorrectly entered (206)
\end{tabular} & Switch off and swap over Um1 and Um2 (This is better than swapping over the CT connections since voltage surges form open circuit CT are avoided) If necessary check settings of 206 \\
\hline Certain steps don't switch in or out. & Wrong selection on the Out menu. & Check to see if some steps have been set as FON or FOFF (permanently on or off) instead of AUTO. \\
\hline Steps are shown as defect FLTY. & Capacitor step faulty or fuse or contactor has failed. & Check capacitor current with clamp on power meter, and compare with rated current are fuses and contactor operating correctly? Replace as required. \\
\hline Steps won't ever switch in, but there is nothing wrong with them & Capacitor step sizes are too big. & Provide more steps of lower kvar per step. \\
\hline EXPORT shows in the display but there is no export. & CT reversed. & \begin{tabular}{l}
Swap over Um1/Um2 to correct. EXPORT may be shown if the CT Current is below 15 mA , check to see the CT ratio is not too high. \\
Check you have correct phase angle setting in 206.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{13.0 TECHNICAL DATA}
\begin{tabular}{|c|c|}
\hline Measurement and Supply Voltage & 90 - 550V 45-65hz 5VA max. Fused to Max. 6A VT multiplication factor adjustable 1...... 350 \\
\hline Current Measurement & \(15 \mathrm{~mA} . . .\). 6A single phase. Internal CT with Current Sensor 20 milliohm. CT multiplication factor adjustable 1....... 4500 \\
\hline Exit relay Ratings & Max rating at \(240 \mathrm{v} 50 / 60 \mathrm{hz}\) phase-neutral Contactor coils 6A inrush Max rating \(415 \mathrm{v} 50 / 60 \mathrm{hz}\) phase-phase Contactor Coils 2.5A inrush \\
\hline Temperature measurement & By varistor or thermocouple \\
\hline Alarm Contact & Volt free relay normally closed (N/C). Max fuse rating 2A., Switch contact 250V 2.5A \\
\hline Air Ventilation Control & Achieved by designating one of the exit relays as ventilation fan contact \\
\hline Data Output & BSTO software by TTL on back of relay \\
\hline Operating Temperature & \(-20+70^{\circ} \mathrm{C}\). Storage \(-40+85^{\circ} \mathrm{C}\) \\
\hline Humidity & 0-95\% - Dew droplets not permitted. \\
\hline Over Voltage Category & II Pollution Degree 3 (DIN VDE 0110 Part 1 / IEC 60664-1) \\
\hline Standards Complied with & \begin{tabular}{l}
DIN VDE 0110 part 1 IEC 60664-1:1992 \\
VDE 0411 part 1 (DIN EN 61010-1 /IEC 61010-1:2001 \\
VDE 0843 Part 20 \\
DIN EN 61326/IEC 61326: 1997+A1: 1998+ A2:2000
\end{tabular} \\
\hline Conformity Listings & CE - UL - cUL \\
\hline Connections & Screw Terminals with plug in connectors to facilitate easy swap overs \\
\hline Casing & Front Plastic Facia (UL94-VO)., Rear - Metal case. \\
\hline IP Ratings & \begin{tabular}{l}
Front : IP50 - IP54 if transparent over cover fitted \\
Rear: IP20
\end{tabular} \\
\hline Weight & 0.60g Approx \\
\hline Dimensions & \(144 \times 144 \times 58 \mathrm{~mm}\) - Cut Out \(138(+0.5) \times 138(+0.5) \mathrm{mm}\) \\
\hline
\end{tabular}

\subsection*{14.0 SETTINGS ON PFC RELAY INSTALLED:}

Relay Serial Number ..(marked on back of the CXPLUS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Menu & Factory default setting & This
relay
setting if
difire & Menu & Factory default setting & This relay setting if different \\
\hline 100 & & & 400 & & \\
\hline Un & 415 v & & 401 & 75 SECS & \\
\hline Ct & 1 & & 402 & \[
\begin{array}{|l|}
\hline 5 \mathrm{var} \\
\text { ( } 1 \ldots \max )
\end{array}
\] & \\
\hline Pt & 1 & & 403 & AUTO for all steps & \\
\hline Ai & NO & & 404 & 0 for all steps & \\
\hline PFC & ON & & 500 & & \\
\hline CPI & 1 & & 501 & NO & \\
\hline St & 10 SECS. & & 502 & NO & \\
\hline OUt & AUTO for all steps. & & 503 & 20\% & \\
\hline 200 & & & 504 & NO & \\
\hline 201 & 415v & & 505 & 60 SECS & \\
\hline 202 & 1 & & 506 & NO & \\
\hline 203 & 1 & & 507 & NO & \\
\hline 204 & 10\% & & 508 & 80,000 contactor operations. & \\
\hline 205 & NO & & 509 & 9,000 operating hours for service alarm & \\
\hline 206 & \begin{tabular}{l}
Automatic change over When Um1-Um 2 is same as Un. Default \(=90\) \\
When Um1-Um 2 is phase - neutral voltage Default \(=0\)
\end{tabular} & & 510 & NO & \\
\hline 207 & NO & & 511 & NO & \\
\hline 208 & YES & & 512 & NO & \\
\hline 209 & AUTO & & 513 & \(30^{\circ} \mathrm{C}\) & \\
\hline 210 & 0 & & 514 & \(70^{\circ} \mathrm{C}\) & \\
\hline 300 & & & 515 & NO & \\
\hline 301 & 60\% & & 516 & YES & \\
\hline 302 & 1 & & 517 & YES & \\
\hline 303 & 0.95i & & 600 & & \\
\hline 304 & NO & & 601 & NO & \\
\hline 305 & 10 SECS & & 602 & NO & \\
\hline 306 & 2 SECS & & 603 & NO & \\
\hline 307 & NO & & 604 & NO & \\
\hline 308 & NO & & 605 & NO & \\
\hline 309 & YES & & 606 & NO & \\
\hline 310 & ON & & & & \\
\hline 311 & 1 & & & & \\
\hline 312 & 0 & & & & \\
\hline 313 & 1 & & & & \\
\hline 314 & NO & & & & \\
\hline
\end{tabular}```

